玛氪宕·梦魔(Markdown Memo),使用Markdown的云端备忘录,百度IFE的RIA启航班的不合格的作业,才……才没有什么阴谋呢!
源gitee链接https://gitee.com/arathi/MarkdownMemo?_from=gitee_search
				
			
			
		
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							110 lines
						
					
					
						
							4.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							110 lines
						
					
					
						
							4.0 KiB
						
					
					
				
								<!doctype html>
							 | 
						|
								
							 | 
						|
								<title>CodeMirror: sTeX mode</title>
							 | 
						|
								<meta charset="utf-8"/>
							 | 
						|
								<link rel=stylesheet href="../../doc/docs.css">
							 | 
						|
								
							 | 
						|
								<link rel="stylesheet" href="../../lib/codemirror.css">
							 | 
						|
								<script src="../../lib/codemirror.js"></script>
							 | 
						|
								<script src="stex.js"></script>
							 | 
						|
								<style>.CodeMirror {background: #f8f8f8;}</style>
							 | 
						|
								<div id=nav>
							 | 
						|
								  <a href="http://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a>
							 | 
						|
								
							 | 
						|
								  <ul>
							 | 
						|
								    <li><a href="../../index.html">Home</a>
							 | 
						|
								    <li><a href="../../doc/manual.html">Manual</a>
							 | 
						|
								    <li><a href="https://github.com/codemirror/codemirror">Code</a>
							 | 
						|
								  </ul>
							 | 
						|
								  <ul>
							 | 
						|
								    <li><a href="../index.html">Language modes</a>
							 | 
						|
								    <li><a class=active href="#">sTeX</a>
							 | 
						|
								  </ul>
							 | 
						|
								</div>
							 | 
						|
								
							 | 
						|
								<article>
							 | 
						|
								<h2>sTeX mode</h2>
							 | 
						|
								<form><textarea id="code" name="code">
							 | 
						|
								\begin{module}[id=bbt-size]
							 | 
						|
								\importmodule[balanced-binary-trees]{balanced-binary-trees}
							 | 
						|
								\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
							 | 
						|
								
							 | 
						|
								\begin{frame}
							 | 
						|
								  \frametitle{Size Lemma for Balanced Trees}
							 | 
						|
								  \begin{itemize}
							 | 
						|
								  \item
							 | 
						|
								    \begin{assertion}[id=size-lemma,type=lemma] 
							 | 
						|
								    Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree} 
							 | 
						|
								    of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
							 | 
						|
								     $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
							 | 
						|
								    \termref[cd=graphs-intro,name=node]{nodes} at 
							 | 
						|
								    \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
							 | 
						|
								    \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
							 | 
						|
								   \end{assertion}
							 | 
						|
								  \item
							 | 
						|
								    \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
							 | 
						|
								      \begin{spfcases}{We have to consider two cases}
							 | 
						|
								        \begin{spfcase}{$i=0$}
							 | 
						|
								          \begin{spfstep}[display=flow]
							 | 
						|
								            then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
							 | 
						|
								            $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.
							 | 
						|
								          \end{spfstep}
							 | 
						|
								        \end{spfcase}
							 | 
						|
								        \begin{spfcase}{$i>0$}
							 | 
						|
								          \begin{spfstep}[display=flow]
							 | 
						|
								           then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes 
							 | 
						|
								           \begin{justification}[method=byIH](IH)\end{justification}
							 | 
						|
								          \end{spfstep}
							 | 
						|
								          \begin{spfstep}
							 | 
						|
								           By the \begin{justification}[method=byDef]definition of a binary
							 | 
						|
								              tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
							 | 
						|
								            two children that are at depth $i$.
							 | 
						|
								          \end{spfstep}
							 | 
						|
								          \begin{spfstep}
							 | 
						|
								           As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
							 | 
						|
								            leaves.
							 | 
						|
								          \end{spfstep}
							 | 
						|
								          \begin{spfstep}[type=conclusion]
							 | 
						|
								           Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
							 | 
						|
								          \end{spfstep}
							 | 
						|
								        \end{spfcase}
							 | 
						|
								      \end{spfcases}
							 | 
						|
								    \end{sproof}
							 | 
						|
								  \item 
							 | 
						|
								    \begin{assertion}[id=fbbt,type=corollary]	
							 | 
						|
								      A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.
							 | 
						|
								    \end{assertion}
							 | 
						|
								  \item
							 | 
						|
								      \begin{sproof}[for=fbbt,id=fbbt-pf]{}
							 | 
						|
								        \begin{spfstep}
							 | 
						|
								          Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree
							 | 
						|
								        \end{spfstep}
							 | 
						|
								        \begin{spfstep}
							 | 
						|
								          Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.
							 | 
						|
								        \end{spfstep}
							 | 
						|
								      \end{sproof}
							 | 
						|
								    \end{itemize}
							 | 
						|
								  \end{frame}
							 | 
						|
								\begin{note}
							 | 
						|
								  \begin{omtext}[type=conclusion,for=binary-tree]
							 | 
						|
								    This shows that balanced binary trees grow in breadth very quickly, a consequence of
							 | 
						|
								    this is that they are very shallow (and this compute very fast), which is the essence of
							 | 
						|
								    the next result.
							 | 
						|
								  \end{omtext}
							 | 
						|
								\end{note}
							 | 
						|
								\end{module}
							 | 
						|
								
							 | 
						|
								%%% Local Variables: 
							 | 
						|
								%%% mode: LaTeX
							 | 
						|
								%%% TeX-master: "all"
							 | 
						|
								%%% End: \end{document}
							 | 
						|
								</textarea></form>
							 | 
						|
								    <script>
							 | 
						|
								      var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});
							 | 
						|
								    </script>
							 | 
						|
								
							 | 
						|
								    <p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p>
							 | 
						|
								
							 | 
						|
								    <p><strong>Parsing/Highlighting Tests:</strong> <a href="../../test/index.html#stex_*">normal</a>,  <a href="../../test/index.html#verbose,stex_*">verbose</a>.</p>
							 | 
						|
								
							 | 
						|
								  </article>
							 |