|  |  |  | <!DOCTYPE html> | 
					
						
							|  |  |  | <html lang="zh"> | 
					
						
							|  |  |  |     <head> | 
					
						
							|  |  |  |         <meta charset="utf-8" /> | 
					
						
							|  |  |  |         <title>Tex 科学公式语言 (TeX/LaTeX) - Editor.md examples</title> | 
					
						
							|  |  |  |         <link rel="stylesheet" href="css/style.css" /> | 
					
						
							|  |  |  |         <link rel="stylesheet" href="../css/editormd.css" /> | 
					
						
							|  |  |  |         <link rel="shortcut icon" href="https://pandao.github.io/editor.md/favicon.ico" type="image/x-icon" /> | 
					
						
							|  |  |  |     </head> | 
					
						
							|  |  |  |     <body> | 
					
						
							|  |  |  |         <div id="layout"> | 
					
						
							|  |  |  |             <header> | 
					
						
							|  |  |  |                 <h1>Tex 科学公式语言 (TeX/LaTeX)</h1> | 
					
						
							|  |  |  | 				<p>Based on KaTeX.js:<a href="http://khan.github.io/KaTeX/" target="_blank">http://khan.github.io/KaTeX/</a></p> | 
					
						
							|  |  |  |                 <p>P.S. Default using CloudFlare KaTeX's CDN. (注:默认使用 CloudFlare 的 CDN,有时加载速度会比较慢,可自定义加载地址。)</p> | 
					
						
							|  |  |  |                 <br/> | 
					
						
							|  |  |  |                 <p><a href="https://jsperf.com/katex-vs-mathjax" target="_blank">KaTeX vs MathJax</a></p>    | 
					
						
							|  |  |  |             </header> | 
					
						
							|  |  |  |             <div id="test-editormd">                 | 
					
						
							|  |  |  |                 <textarea style="display:none;">[TOC] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #### Setting | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         tex  : true | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #### Custom KaTeX source URL | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```javascript | 
					
						
							|  |  |  | // Default using CloudFlare KaTeX's CDN | 
					
						
							|  |  |  | // You can custom url | 
					
						
							|  |  |  | editormd.katexURL = { | 
					
						
							|  |  |  |     js  : "your url",  // default: //cdnjs.cloudflare.com/ajax/libs/KaTeX/0.3.0/katex.min | 
					
						
							|  |  |  |     css : "your url"   // default: //cdnjs.cloudflare.com/ajax/libs/KaTeX/0.3.0/katex.min | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #### Examples | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##### 行内的公式 Inline | 
					
						
							|  |  |  |   | 
					
						
							|  |  |  | $$E=mc^2$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Inline 行内的公式 $$E=mc^2$$ 行内的公式,行内的$$E=mc^2$$公式。 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$c = \\pm\\sqrt{a^2 + b^2}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$x > y$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$f(x) = x^2$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\alpha = \sqrt{1-e^2}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\(\sqrt{3x-1}+(1+x)^2\)$$ | 
					
						
							|  |  |  |               | 
					
						
							|  |  |  | $$\sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f))$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\\dfrac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b\_k^2 \right)$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$a^2$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$a^{2+2}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$a_2$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $${x_2}^3$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$x_2^3$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$10^{10^{8}}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$a_{i,j}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$_nP_k$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$c = \pm\sqrt{a^2 + b^2}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\frac{1}{2}=0.5$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\dfrac{k}{k-1} = 0.5$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\dbinom{n}{k} \binom{n}{k}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\oint_C x^3\, dx + 4y^2\, dy$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\bigcap_1^n p   \bigcup_1^k p$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$e^{i \pi} + 1 = 0$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\left ( \frac{1}{2} \right )$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\textstyle \sum_{k=1}^N k^2$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\binom{n}{k}$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\sum_{k=1}^N k^2$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\textstyle \sum_{k=1}^N k^2$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\prod_{i=1}^N x_i$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\textstyle \prod_{i=1}^N x_i$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\coprod_{i=1}^N x_i$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\textstyle \coprod_{i=1}^N x_i$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\int_{1}^{3}\frac{e^3/x}{x^2}\, dx$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $$\int_C x^3\, dx + 4y^2\, dy$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | $${}_1^2\!\Omega_3^4$$ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##### 多行公式 Multi line | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | > \`\`\`math or \`\`\`latex or \`\`\`katex | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```math | 
					
						
							|  |  |  | f(x) = \int_{-\infty}^\infty | 
					
						
							|  |  |  |     \hat f(\xi)\,e^{2 \pi i \xi x} | 
					
						
							|  |  |  |     \,d\xi | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```math | 
					
						
							|  |  |  | \displaystyle | 
					
						
							|  |  |  | \left( \sum\_{k=1}^n a\_k b\_k \right)^2 | 
					
						
							|  |  |  | \leq | 
					
						
							|  |  |  | \left( \sum\_{k=1}^n a\_k^2 \right) | 
					
						
							|  |  |  | \left( \sum\_{k=1}^n b\_k^2 \right) | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```math | 
					
						
							|  |  |  | \dfrac{  | 
					
						
							|  |  |  |     \tfrac{1}{2}[1-(\tfrac{1}{2})^n] } | 
					
						
							|  |  |  |     { 1-\tfrac{1}{2} } = s_n | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```katex | 
					
						
							|  |  |  | \displaystyle  | 
					
						
							|  |  |  |     \frac{1}{ | 
					
						
							|  |  |  |         \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{ | 
					
						
							|  |  |  |         \frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} { | 
					
						
							|  |  |  |         1+\frac{e^{-6\pi}} | 
					
						
							|  |  |  |         {1+\frac{e^{-8\pi}} | 
					
						
							|  |  |  |          {1+\cdots} } | 
					
						
							|  |  |  |         }  | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```latex | 
					
						
							|  |  |  | f(x) = \int_{-\infty}^\infty | 
					
						
							|  |  |  |     \hat f(\xi)\,e^{2 \pi i \xi x} | 
					
						
							|  |  |  |     \,d\xi | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #### KaTeX vs MathJax | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | [https://jsperf.com/katex-vs-mathjax](https://jsperf.com/katex-vs-mathjax "KaTeX vs MathJax") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | </textarea> | 
					
						
							|  |  |  |             </div> | 
					
						
							|  |  |  |         </div> | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         <script src="js/jquery.min.js"></script> | 
					
						
							|  |  |  |         <script src="../editormd.js"></script>    | 
					
						
							|  |  |  |         <script type="text/javascript"> | 
					
						
							|  |  |  |             $(function() { | 
					
						
							|  |  |  |                 var testEditor = editormd("test-editormd", { | 
					
						
							|  |  |  |                     width: "90%", | 
					
						
							|  |  |  |                     height: 640, | 
					
						
							|  |  |  |                     path : '../lib/', | 
					
						
							|  |  |  |                     tex  : true | 
					
						
							|  |  |  |                 }); | 
					
						
							|  |  |  |             }); | 
					
						
							|  |  |  |         </script> | 
					
						
							|  |  |  |     </body> | 
					
						
							|  |  |  | </html> |