玛氪宕·梦魔(Markdown Memo),使用Markdown的云端备忘录,百度IFE的RIA启航班的不合格的作业,才……才没有什么阴谋呢!
源gitee链接https://gitee.com/arathi/MarkdownMemo?_from=gitee_search
				
			
			
		
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					111 lines
				
				4.0 KiB
			
		
		
			
		
	
	
					111 lines
				
				4.0 KiB
			| 
											11 years ago
										 | <!doctype html> | ||
|  | 
 | ||
|  | <title>CodeMirror: sTeX mode</title> | ||
|  | <meta charset="utf-8"/> | ||
|  | <link rel=stylesheet href="../../doc/docs.css"> | ||
|  | 
 | ||
|  | <link rel="stylesheet" href="../../lib/codemirror.css"> | ||
|  | <script src="../../lib/codemirror.js"></script> | ||
|  | <script src="stex.js"></script> | ||
|  | <style>.CodeMirror {background: #f8f8f8;}</style> | ||
|  | <div id=nav> | ||
|  |   <a href="http://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a> | ||
|  | 
 | ||
|  |   <ul> | ||
|  |     <li><a href="../../index.html">Home</a> | ||
|  |     <li><a href="../../doc/manual.html">Manual</a> | ||
|  |     <li><a href="https://github.com/codemirror/codemirror">Code</a> | ||
|  |   </ul> | ||
|  |   <ul> | ||
|  |     <li><a href="../index.html">Language modes</a> | ||
|  |     <li><a class=active href="#">sTeX</a> | ||
|  |   </ul> | ||
|  | </div> | ||
|  | 
 | ||
|  | <article> | ||
|  | <h2>sTeX mode</h2> | ||
|  | <form><textarea id="code" name="code"> | ||
|  | \begin{module}[id=bbt-size] | ||
|  | \importmodule[balanced-binary-trees]{balanced-binary-trees} | ||
|  | \importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality} | ||
|  | 
 | ||
|  | \begin{frame} | ||
|  |   \frametitle{Size Lemma for Balanced Trees} | ||
|  |   \begin{itemize} | ||
|  |   \item | ||
|  |     \begin{assertion}[id=size-lemma,type=lemma]  | ||
|  |     Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}  | ||
|  |     of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set | ||
|  |      $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of | ||
|  |     \termref[cd=graphs-intro,name=node]{nodes} at  | ||
|  |     \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has | ||
|  |     \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$. | ||
|  |    \end{assertion} | ||
|  |   \item | ||
|  |     \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.} | ||
|  |       \begin{spfcases}{We have to consider two cases} | ||
|  |         \begin{spfcase}{$i=0$} | ||
|  |           \begin{spfstep}[display=flow] | ||
|  |             then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so | ||
|  |             $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$. | ||
|  |           \end{spfstep} | ||
|  |         \end{spfcase} | ||
|  |         \begin{spfcase}{$i>0$} | ||
|  |           \begin{spfstep}[display=flow] | ||
|  |            then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes  | ||
|  |            \begin{justification}[method=byIH](IH)\end{justification} | ||
|  |           \end{spfstep} | ||
|  |           \begin{spfstep} | ||
|  |            By the \begin{justification}[method=byDef]definition of a binary | ||
|  |               tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has | ||
|  |             two children that are at depth $i$. | ||
|  |           \end{spfstep} | ||
|  |           \begin{spfstep} | ||
|  |            As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain | ||
|  |             leaves. | ||
|  |           \end{spfstep} | ||
|  |           \begin{spfstep}[type=conclusion] | ||
|  |            Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$. | ||
|  |           \end{spfstep} | ||
|  |         \end{spfcase} | ||
|  |       \end{spfcases} | ||
|  |     \end{sproof} | ||
|  |   \item  | ||
|  |     \begin{assertion}[id=fbbt,type=corollary]	 | ||
|  |       A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes. | ||
|  |     \end{assertion} | ||
|  |   \item | ||
|  |       \begin{sproof}[for=fbbt,id=fbbt-pf]{} | ||
|  |         \begin{spfstep} | ||
|  |           Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree | ||
|  |         \end{spfstep} | ||
|  |         \begin{spfstep} | ||
|  |           Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$. | ||
|  |         \end{spfstep} | ||
|  |       \end{sproof} | ||
|  |     \end{itemize} | ||
|  |   \end{frame} | ||
|  | \begin{note} | ||
|  |   \begin{omtext}[type=conclusion,for=binary-tree] | ||
|  |     This shows that balanced binary trees grow in breadth very quickly, a consequence of | ||
|  |     this is that they are very shallow (and this compute very fast), which is the essence of | ||
|  |     the next result. | ||
|  |   \end{omtext} | ||
|  | \end{note} | ||
|  | \end{module} | ||
|  | 
 | ||
|  | %%% Local Variables:  | ||
|  | %%% mode: LaTeX | ||
|  | %%% TeX-master: "all" | ||
|  | %%% End: \end{document} | ||
|  | </textarea></form> | ||
|  |     <script> | ||
|  |       var editor = CodeMirror.fromTextArea(document.getElementById("code"), {}); | ||
|  |     </script> | ||
|  | 
 | ||
|  |     <p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p> | ||
|  | 
 | ||
|  |     <p><strong>Parsing/Highlighting Tests:</strong> <a href="../../test/index.html#stex_*">normal</a>,  <a href="../../test/index.html#verbose,stex_*">verbose</a>.</p> | ||
|  | 
 | ||
|  |   </article> |