|
|
|
<!DOCTYPE html>
|
|
|
|
<html lang="zh">
|
|
|
|
<head>
|
|
|
|
<meta charset="utf-8" />
|
|
|
|
<title>Tex 科学公式语言 (TeX/LaTeX) - Editor.md examples</title>
|
|
|
|
<link rel="stylesheet" href="css/style.css" />
|
|
|
|
<link rel="stylesheet" href="../css/editormd.css" />
|
|
|
|
<link rel="shortcut icon" href="https://pandao.github.io/editor.md/favicon.ico" type="image/x-icon" />
|
|
|
|
</head>
|
|
|
|
<body>
|
|
|
|
<div id="layout">
|
|
|
|
<header>
|
|
|
|
<h1>Tex 科学公式语言 (TeX/LaTeX)</h1>
|
|
|
|
<p>Based on KaTeX.js:<a href="http://khan.github.io/KaTeX/" target="_blank">http://khan.github.io/KaTeX/</a></p>
|
|
|
|
<p>P.S. Default using CloudFlare KaTeX's CDN. (注:默认使用 CloudFlare 的 CDN,有时加载速度会比较慢,可自定义加载地址。)</p>
|
|
|
|
<br/>
|
|
|
|
<p><a href="https://jsperf.com/katex-vs-mathjax" target="_blank">KaTeX vs MathJax</a></p>
|
|
|
|
</header>
|
|
|
|
<div id="test-editormd">
|
|
|
|
<textarea style="display:none;">[TOC]
|
|
|
|
|
|
|
|
#### Setting
|
|
|
|
|
|
|
|
{
|
|
|
|
tex : true
|
|
|
|
}
|
|
|
|
|
|
|
|
#### Custom KaTeX source URL
|
|
|
|
|
|
|
|
```javascript
|
|
|
|
// Default using CloudFlare KaTeX's CDN
|
|
|
|
// You can custom url
|
|
|
|
editormd.katexURL = {
|
|
|
|
js : "your url", // default: //cdnjs.cloudflare.com/ajax/libs/KaTeX/0.10.1/katex.min
|
|
|
|
css : "your url" // default: //cdnjs.cloudflare.com/ajax/libs/KaTeX/0.10.1/katex.min
|
|
|
|
};
|
|
|
|
```
|
|
|
|
|
|
|
|
#### Examples
|
|
|
|
|
|
|
|
##### 行内的公式 Inline
|
|
|
|
|
|
|
|
$$E=mc^2$$
|
|
|
|
|
|
|
|
Inline 行内的公式 $$E=mc^2$$ 行内的公式,行内的$$E=mc^2$$公式。
|
|
|
|
|
|
|
|
$$c = \\pm\\sqrt{a^2 + b^2}$$
|
|
|
|
|
|
|
|
$$x > y$$
|
|
|
|
|
|
|
|
$$f(x) = x^2$$
|
|
|
|
|
|
|
|
$$\alpha = \sqrt{1-e^2}$$
|
|
|
|
|
|
|
|
$$\(\sqrt{3x-1}+(1+x)^2\)$$
|
|
|
|
|
|
|
|
$$\sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f))$$
|
|
|
|
|
|
|
|
$$\\dfrac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$$
|
|
|
|
|
|
|
|
$$f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$
|
|
|
|
|
|
|
|
$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
|
|
|
|
|
|
|
|
$$\displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b\_k^2 \right)$$
|
|
|
|
|
|
|
|
$$a^2$$
|
|
|
|
|
|
|
|
$$a^{2+2}$$
|
|
|
|
|
|
|
|
$$a_2$$
|
|
|
|
|
|
|
|
$${x_2}^3$$
|
|
|
|
|
|
|
|
$$x_2^3$$
|
|
|
|
|
|
|
|
$$10^{10^{8}}$$
|
|
|
|
|
|
|
|
$$a_{i,j}$$
|
|
|
|
|
|
|
|
$$_nP_k$$
|
|
|
|
|
|
|
|
$$c = \pm\sqrt{a^2 + b^2}$$
|
|
|
|
|
|
|
|
$$\frac{1}{2}=0.5$$
|
|
|
|
|
|
|
|
$$\dfrac{k}{k-1} = 0.5$$
|
|
|
|
|
|
|
|
$$\dbinom{n}{k} \binom{n}{k}$$
|
|
|
|
|
|
|
|
$$\oint_C x^3\, dx + 4y^2\, dy$$
|
|
|
|
|
|
|
|
$$\bigcap_1^n p \bigcup_1^k p$$
|
|
|
|
|
|
|
|
$$e^{i \pi} + 1 = 0$$
|
|
|
|
|
|
|
|
$$\left ( \frac{1}{2} \right )$$
|
|
|
|
|
|
|
|
$$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$$
|
|
|
|
|
|
|
|
$${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$$
|
|
|
|
|
|
|
|
$$\textstyle \sum_{k=1}^N k^2$$
|
|
|
|
|
|
|
|
$$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n$$
|
|
|
|
|
|
|
|
$$\binom{n}{k}$$
|
|
|
|
|
|
|
|
$$0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots$$
|
|
|
|
|
|
|
|
$$\sum_{k=1}^N k^2$$
|
|
|
|
|
|
|
|
$$\textstyle \sum_{k=1}^N k^2$$
|
|
|
|
|
|
|
|
$$\prod_{i=1}^N x_i$$
|
|
|
|
|
|
|
|
$$\textstyle \prod_{i=1}^N x_i$$
|
|
|
|
|
|
|
|
$$\coprod_{i=1}^N x_i$$
|
|
|
|
|
|
|
|
$$\textstyle \coprod_{i=1}^N x_i$$
|
|
|
|
|
|
|
|
$$\int_{1}^{3}\frac{e^3/x}{x^2}\, dx$$
|
|
|
|
|
|
|
|
$$\int_C x^3\, dx + 4y^2\, dy$$
|
|
|
|
|
|
|
|
$${}_1^2\!\Omega_3^4$$
|
|
|
|
|
|
|
|
##### 多行公式 Multi line
|
|
|
|
|
|
|
|
> \`\`\`math or \`\`\`latex or \`\`\`katex
|
|
|
|
|
|
|
|
```math
|
|
|
|
f(x) = \int_{-\infty}^\infty
|
|
|
|
\hat f(\xi)\,e^{2 \pi i \xi x}
|
|
|
|
\,d\xi
|
|
|
|
```
|
|
|
|
|
|
|
|
```math
|
|
|
|
\displaystyle
|
|
|
|
\left( \sum\_{k=1}^n a\_k b\_k \right)^2
|
|
|
|
\leq
|
|
|
|
\left( \sum\_{k=1}^n a\_k^2 \right)
|
|
|
|
\left( \sum\_{k=1}^n b\_k^2 \right)
|
|
|
|
```
|
|
|
|
|
|
|
|
```math
|
|
|
|
\dfrac{
|
|
|
|
\tfrac{1}{2}[1-(\tfrac{1}{2})^n] }
|
|
|
|
{ 1-\tfrac{1}{2} } = s_n
|
|
|
|
```
|
|
|
|
|
|
|
|
```katex
|
|
|
|
\displaystyle
|
|
|
|
\frac{1}{
|
|
|
|
\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{
|
|
|
|
\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {
|
|
|
|
1+\frac{e^{-6\pi}}
|
|
|
|
{1+\frac{e^{-8\pi}}
|
|
|
|
{1+\cdots} }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
```katex
|
|
|
|
\begin{cases}x^2+y^2-2x=0
|
|
|
|
\\
|
|
|
|
x^2+y^2-2x=0
|
|
|
|
\end{cases}
|
|
|
|
```
|
|
|
|
|
|
|
|
```latex
|
|
|
|
f(x) = \int_{-\infty}^\infty
|
|
|
|
\hat f(\xi)\,e^{2 \pi i \xi x}
|
|
|
|
\,d\xi
|
|
|
|
```
|
|
|
|
|
|
|
|
#### KaTeX vs MathJax
|
|
|
|
|
|
|
|
[https://jsperf.com/katex-vs-mathjax](https://jsperf.com/katex-vs-mathjax "KaTeX vs MathJax")
|
|
|
|
|
|
|
|
</textarea>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<script src="js/jquery.min.js"></script>
|
|
|
|
<script src="../editormd.js"></script>
|
|
|
|
<script type="text/javascript">
|
|
|
|
$(function() {
|
|
|
|
// custom Katex version
|
|
|
|
// editormd.katexURL = {
|
|
|
|
// css : "https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.10.1/katex.min",
|
|
|
|
// js : "https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.10.1/katex.min"
|
|
|
|
// };
|
|
|
|
|
|
|
|
var testEditor = editormd("test-editormd", {
|
|
|
|
width: "90%",
|
|
|
|
height: 640,
|
|
|
|
path : '../lib/',
|
|
|
|
tex : true
|
|
|
|
});
|
|
|
|
});
|
|
|
|
</script>
|
|
|
|
</body>
|
|
|
|
</html>
|